Exam. Code : 103204

 Subject Code : 1107
B.A./B.Sc. 4 $^{\text {th }}$ Semester MATHEMATICS

Paper-II

(Solid Geometry)
Time Allowed-2 Hours] [Maximum Marks-50
Note :- There are eight questions of equal marks. Candidates are required to attempt any four questions.

1. (a) A cylinder cuts the plane $\mathrm{z}=0$ in the curve $x^{2}+\frac{y^{2}}{4}=\frac{1}{4}$, and has its axis parallel to $3 x=-6 z$. Find its equation.
(b) Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the ellipse $\mathrm{x}^{2}+2 \mathrm{y}^{2}=1, \mathrm{z}=0$.
2. (a) Find the equation of the right circular cylinder whose guiding curve is the circle passing through the points $(2,0,0),(0,2,0)$ and $(0,0,2)$.
(b) Find the equation of the right circular cylinder whose guiding circle is:

$$
x^{2}+y^{2}+z^{2}-2 x+4 y-6 z-2=0,2 x+3 y+6 z=0 .
$$

3. (a) Prove that the equation $x^{2}-2 y^{2}+3 z^{2}-4 x y+$ $5 y z-6 z x+8 x-19 y-2 z-20=0$ represents a cone, find its vertex.
(b) Find the condition that the plane $l x+m y+n z=0$ may touch the cone $2 x^{2}-3 y^{2}+z^{2}=0$ and find the equation of the reciprocal cone.
4. (a) Find the equation of cone whose vertex is at origin and base curve if $f(x, y)=0, z=k$.
(b) Find the angle between the lines of sections of the following planes and cones :

$$
3 x+y+5 z=0,6 y z-2 z x+5 x y=0 .
$$

5. Reduce $x^{2}+3 y^{2}+3 z^{2}-2 y z-2 x-2 y+6 z+3=0$ to standard form and prove that it represents an ellipsoid.
6. (a) Write down the equation of the surface of revolution obtained by rotating the curve $y^{2}+16 z^{2}=4, x=0$ about the z-axis.
(b) Find the locus of the chords of the conicoid $a x^{2}+b y^{2}+c z^{2}=1$ which are bisected at the points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$)
7. Reduce the equation :
$3 x^{2}+7 y^{2}+3 z^{2}+10 y z-2 z x+10 x y+4 x-12 y-4 z+1=0$ to the standard form and state the nature of the surface represented by it
8. (a) A tangent plane to ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meets the co-ordinates axes in L,M,N. Prove that the centroid of the triangle LMN lies on $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}+\frac{c^{2}}{z^{2}}=9$.
(b) Find the equation of the tangent plane at the point ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) of the central conicoid $a x^{2}+b y^{2}+\mathrm{cz}^{2}=1$.
